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ABSTRACT

This document reports the results of research into the application of artificial neural networks

to controlling dynamic systems. The network used is a feed-forward, fully-connected, 3-layer perceptron.

Two methods of training neural networks via error back-propagation were used. Pattern matching

training is a direct method that teaches the basic response. Performance index training is a new

technique that refines the response. Performance index training is based on the concept of enforced

performance. A neural network will learn to meet a specific performance goal if the performance

standard is the only solution to a problem. Performance index training is devised to teach the neural

network the time-optimal control law for the system. Real-time adaptation of a neural network,

employed in the closed loop control of the Crew/Equipment Retriever, was demonstrated by computer

simulation.
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I. INTRODUCTION

A. GOAL OF THE RESEARCH

The goal of this research was to develop a neural network that can be used as a real-time,

intelligent control system. Adaptive control has been used in situations where the physical system to

be controlled is time-varying and uncertain. Adaptive control schemes usually rely on multiple feedback

loops that track critical system parameters (e.g., mass, thrust magnitude, or time constants). The range

of variation in any system parameter must be small or the controller often cannot adapt. Neural

networks can be used as nonlinear, time-varying controllers if some method for measuring the

performance of the system and adapting the network can be devised. For this research, system states

were used as inputs to a neural net which was trained by two methods to mimic the nonlinear minimum-

time control law for the Crew/Equipment Retriever (CER).

Neural net training was conducted by direct and indirect means. Direct training, or pattern

matching, required the neural network to reproduce the desired control signal when fed corresponding

system states. This method of training requires a priori knowledge of the desired control function.

Performance index training is a new concept devised to teach a neural network to meet a specified

performance goal while the neural network is actively controlling the CER. Performance index training

requires no advance knowledge of the desired control function.

B. CHARACTERISTICS DESIRED FOR REAL-TIME CONTROL

Real-time control of systems by a neural network depends strongly on the implementation of the

network. High throughput is desired in order that small sample intervals may be used. The high order

of parallelism in a neural network that gives processing speed advantages over sequential systems is lost

when the network is implemented in software on a single processor computer. The long-term solution

to throughput will be custom VLSI implementations of neural networks; however, software



implementations must be used at present. Small neural networks can be implemented on modestly sized

computers and give the throughput desired.

A second requirement for real-time control by a neural network is on-line adaptability. The

significant cobts of implementing a neural network in software and providing a computer to run the

program is justified only if superior performance can be gained by such an effort. Real-time adaptation

depends on a measure of error in the system state which is being controlled, a means by which the error

can be related to the network weights, and a fast implementation of the training algorithm.

C. THESIS ORGANIZATION

This report is organized into five chapters and one appendix. Chapter I is this introduction and

motivates the research and describes the contents of this thesis. Chapter II develops the control

problem and the state equations of the CER. Artificial neural networks, error back-propagation, and

dosed loop control by neural networks are introduced in Chapter III. The results of this research are

presented in Chapter IV including three-dimensional graphic output from the neural networks and time

simuation examples of neural network learning. Conclusions and recommendations for further study

are covered in Chapter V. The FORTRAN computer programs used to implement, train, and test the

neural networks investigated in this thesis are listed in Appendix A.
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IL CONTROL PROBLEM

A. CREW/EQUIPMENT RETRIEVER

The Crew/Equipment Retriever (CER) was designed by McDonnell Douglas Astronautics

Company in response to a NASA request for proposal in Reference 1. The CER was designed to

autonomously intercept, capture and retrieve objects or astronauts that have become detached from

Space Station FREED0M. Figure 2.1 shows the layout of the CER and Table I summarizes its physical

characteristics.

Hansen [Ref. 2] investigated time optimal and fuel-time optimal control laws for the CER. Time

optimal control trades fuel usage for high accuracy. Fuel-time optimal control strikes a balance

5Im ft-f.

r N....An

Figure 2.1. Crew/Equipment Retriever. Courtesy McDonnell Douglas Astronautics Co.

3



Table I. CER CHARACTERISTICS

MASS 4023kg

DIMENSIONS
LENGTH 1.27m
WIDTH 1.02m
HEIGHT 1.02m

THRUSTERS 4.448N

PAYLOAD 302.9kg

between conserving fuel and accurate pointing. Both control schemes can be used for different CER

mission phases.

Synthesis of both of the above control laws is highly dependent on good knowledge of the size

and location of the object being retrieved. The CER is modeled as a rigid body, with no viscous or

spring damping, acted upon by thruster torques. The mathematical model used in control law synthesis

depends on the size and location of the object retrieved. Hansen demonstrated the sensitivity of the

optimal control law with respect to uncertainty in the location and size of the recovered object.

Inaccuracies in estimates of the size and location of the recovered object results in a control law that

is not optimal and may cause instability.

B. CER SYSTEM STATE EQUATIONS

The equation of motion for a rigid body acted upon by a torque is given in Equation (2-1).

ZT ± (2-1)
,i

where T is a torque vector, I is the moment of inertia tensor and & is the vector of rotation rates, about

three orthogonal axes, in radians per second. For simplicity, this project will investigate single axis

control of the CER. The torque equation for rotation about the x-axis is simplified to:

The moment of inertia of the CER about the x axis (.) is given by.

4



droT =I dc,- a (2.2)

, 2 f 2) dm (2-3)

where y and z are spatial coordinates and dm is the differential of the mass. The CER is assumed to

be a uniformly distributed mass inside a parallelpiped structure (Figure 2.2). The differential of the

mass can then be replaced with the density multiplied by the differentials of each of the spatial

dimensions:

+PITCH
7' DIAMETER NET

A+X +,

+ROLL,

A

+Z
Figure 2.2. Moment of inertia [from Ref 2., pg. 8].
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M 9Z _y) dX dy dt (2-4)

where M iz the mass of the CER and V is the total volume. The volume occupied is 1.311 m3 and the

mass is 402.3 kg. Integrating equation (2-5) with respect to each linear dimension gives the moment

of inertia about the x-axis.

0.51 0.51 0.63542.3 f f f (z2 y)Xdy d (2-5)
-0.51 -0-51 -0.635

I= 54.82 kg m2  (2-6)

Roll maneuvers are accomplished by firing two pair of thrusters simultaneously. Torque from

the control thrusters around the x-axis (T.) is the product of the force supplied (F,) and the distance

between the thrusters (dx):

T, = d. F. (2-7)

T. = (0.914 m)(4.448 N)(2) (2-8)

T. = 9.0388 N m (2-9)

Assigning states (2-10) and solving The torque equation gives the state equations of the CER (2-

II):

dO w(2-10)
dt

0 0: 1 481 i (2-11)

where u is defined as the control signal.

6



The control signal has been normalized to:

+ 1.0 Positive thruser rque
u = Zero hruster torqe

-1.0 Negative thruser torqueJ

The state equations can be converted to a system of linear discrete state equations using a time step size

of 0.01 seconds. The resulting discrete state equations are:

I (n+1) I 1 0.01 1 1(n) I .244 -10-61un)(-2
ca(n+l) 0 1 w"(n) 1.6488,10-1 u(n)

C. MINIMUM TIME CONTROL LAW

The cost function that leads to minimum time control laws is:

I
J= f dr (2-13)

to

By applying Ponryagin's Minimum Principle, the optimal control law may be found:

'= os=0 (2-14)

where S = x1 + X .

The optimal switching curve represents the zero-trace of the switching function S and is displayed

in Figure 2.3. The control signal u is equal to -1.0 for state space coordinates above and to the right

of the curved line. For locations below and to the left of the line the control signal is + 1.0. The

optimal control law can also be interpreted as a control surface whose height corresponds to the optimal

control signal for each theta-omega location in the state space.

Figure 2.4 illustrates a typical minimum time trajectory for initial conditions in the first quadrant

of the state space. The CER accelerates in the negative omega direction until it intersects the switching

7
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U • -1

THETA

U - +1

Figure 2.3. Minimum time switching curve.

curve. The direction of acceleration then reverses until the CER reaches the center. Minimum time

control provides accurate pointing but uses large amounts of fuel. This control scheme should be used

only when highly precise maneuvers are required.
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Figure 2.4. Minimum time trajectory.



III ARTIFICIAL NEURAL NETWORK

A. NEURAL NETWORK ARCHITECTURE

A neural network is a collection of simple processing elements (neurons) joined by weighted

connections. The weights may be positive, negative or zero and are assigned values during the network

training process. The neural network performs a mapping from the inputs via the neuron transfer

characteristic and the weights to the output(s).

Each neuron possesses a transfer characteristic that describes its input-output relationship. A

key requirement for this function is that it should be nonlinear. The neurons used in this project are

identical and possess a sigmoid transfer characteristic given by Equation (3-1) and diagrammed in Figure

3.1:

At) = 1.0 (3-1)

(1 e

The sigmoid function in Equation (3-1) was selected for this application because it saturates at 1.0

and passes through the origin of the input-output space. Symmetry is not necessarily required, but is

suggested by the range of inputs to the neural network. This function is also differentiable, which is a

requirement for the training method employed.

The neural network used in this project can be described as a feed-forward, fully-connected, 3-

layer perceptron. Figure 3.2 is a diagram of a neural network used for single axis control showing the

inputs, weight matrices, neurons, and outputs. Each neuron input, netj, is the dot product of the previous

layer neurons' outputs, inpi and the next layer's corresponding weights, v j:

#= iv (3-2)

10



1.0
f(net)

net

-1.0

Figure 3.1. Neuron Transfer Characteristic

The constant neurons at + 1.0 act as a bias in the input of the neuron and aid in learning. Lapedes and

Farber [Ref. 3] reported that 3 layer neural networks of this type are capable of learning any arbitr

input-output mapping. Unfortunately, there is no rule for selecting the transfer characteristic of the

neurons or number and arrangement of the neurons.

Variable names used throughout this thesis are the same as those in the FORTRAN computer

programs listed in Appendix A. Inputs to the neural net enter from the left, as illustrated in Figure 3.2

and are distributed by input nodes (linear neurons) to the first hidden layer neurons via the W matrix

by Equation (3-3).

hnetj w,, /ip, (3-3)

The output of the first hidden layer Equation (3-4), propagates to the second hidden layer via the V

weight matrix as shown by Equation (3-5).

11
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S=Ahnet ) (3-4)

oret 1 vg hfj (3-5)

The outputs of the second hidden la)er, given by Equation (3-6) are sent, in turn, to the output neuron

through the Z weight vector, shown by Equation (3-7).

Of Aonetk) (3-6)

fiet E Zk Ofk (3-7)
k

The output of the neural network is the thruster control signal "C" as shown in Equation (3-8).

C = t fnet) (3-8)

Only the input values and network output are accessible to the outside world. The center two

layers are thus "hidden" from view. The error back-propagation algorithm was designed to adjust the

weights of the hidden neurons based on observable inputs and outputs, and knowledge of the network

configuration.

B. ERROR BACK-PROPAGATION

Error back-propagation is a technique by which neural network weights are adjusted (trained)

in a recursive manner to minimize the sum of squared error of the neural network output [Ref. 4]. This

technique is an application of the generalized delta rule which is a gradient optimization procedure.

This procedure allows a neural network to learn an input-output mapping by successive applications of

the training algorithm over a wide range of inputs. This procedure also solves the problem of adjusting

the weights of the hidden layer neurons by calculating an error component for each hidden neuron. The

13



error back-propagation algorithm will be derived below. This derivation will closely follow the

development in [Ref. 4:pp 324-3271 except it will be applied to the network investigated in this thesis.

Equations (3-1) through (3-8) may be combined into a single relation between the input signals

and the neural network output

CQmp) -f( f k( fJ( bW WI ) V&) Zk) (3-9)

The error value to be minimized via error back-propagation is:

E - (DESIRED - C (3-10)
2

where DESIRED is the function that the network must learn. The error is measured at the output node

of the neural network.

Error back-propagation adjusts each weight in the network by an amount proportional to the

gradient of the error taken with respect to the variable weights. The learning rate (LR) is a fixed

constant of proportionality used to adjust the speed of learning and to avoid instability of the network

during training. The rule for adjusting the weights is:

AW41  __ L (LR) (3-11)

A few general terms will be defined now and used in the following derivation. The derivative of

the error with respect to the output of the neural net is:

DELEC = 2E = -1.0 (DESIRED - C) (3-12)
C

The derivative across a neuron is given by:

sIGDER-- dfnd _ 2.0dIGD ne ((3-13)dnet (0 e-)

Successive application of the chain rule gives formulas for adjusting each of the weights.

14



1. Z-WEIGHTS

The adjustment to each of the weights in the Z vector is defined as the gradient of the output

error taken with respect to the weight being examined. Equation (3-14) represents the application of

the chain rule to the output error.

AZk = LR(LE - LR 8E2C fWhet) (3-14)

Substituting the previously defined values of SIGDER and DELEC into Equation (3-14) gives:

Azk - LR ( ') ($SGDERfnet)) n E  ofkt
Zk (3-15)

and

Azk = LR (DELEC) (SIGDER mnt)) Ofk (3-16)

Equation (3-16) gives the change of weight 2k and is applied for each training presentation.

2. V-WEIGHTS

The gradient of the error with respect to the V weights is given by:

A,,, aL.R ,.3R E 8fdynel,, -ofk (2oi:t, (3-17)

Substituting as before gives:

Avj, =u(- -)SfGD fna)(-LE ofh)SIGDERWona)i~ v, hf5) (318

Defining:

15



DELF = ( t) = SIGDER(fnet) (DELEC) (3-19)

and

DELTAO = SIGDER(one (3-20)

and substituting Equations (3-19) and (3-20) into Equation (3-18) completes the derivation.of the change

to weight VA:

=vj LR(DEm DELTAO(z4kfh (3-21)

3. W-WEIGHTS

The changes in the W weights are calculated last in the same fashion as before. The gradient of

the error taken with respect to the W weights is:
Aw. = LR )( . fnet)[ ....4 J[ 8neq)j[ 8hne[,w (3-22)

Uwhefn aifk aonekA 8 aetj aw,,

Substituting the values defined in Equations (3-12), (3-13), (3-19), and (3-20) simplifies the relation to:

AwIV = LR[ E (DELF) (zk) (DEL TA~k) V 3 SIGDERkhrnet)( a- E w~iinp (3-2)

Accumulating the first term (square brackets) in Equation (3-23) in a new variable:

DELCHJ E vtzkDELTAOt (3-24)

and defining:

DELTAH, - SIGDE1hntj) (3-25)

gives the final result for the change to the wj weights:

16



A w, = LR(DEL)(DECH)(DELTAH)(inp,) (3-26)

The above relations are carried out in the order presented during a training cycle. After all adjustments

are calculated, they are subtracted from the respective weights and a new training cycle begins.

Cumulative back-propagation, in which several training cycles are computed before the weights are

adjusted, may also be implemented with the above scheme. The above derivation can be used when the

desired output of the neural net is known. The procedure then implements pattern matching training

by causing the neural network to learn the desired input-output mapping.

When the neural network is part of a control system and the error being measured is a function

of the end state of the system, an extension to the original error back-propagation rule must be used

[Ref. 3]. Extending the error back-propagation algorithm to include a cascaded system requires that

a derivative of the output of the system with respect to the input be computed. Psaltis, et al. [Ref. 5]

proposed this extension as a way to link the neural network output, used as a control input to a system,

to the system states. Nguyen and Widrow [Ref. 6] used a neural network trained to emulate the system

being controlled during the training process instead of state equations. While the application made by

Nguyen and Widrow simplifies the computation of the error signals (the error is back-propagated

through a static neural network), it requires the neural net emulator to be trained to simulate the system

dynamics before training of the controller can begin. The increased development time created by

training the emulator and the increased computation time to back propagate the system state error (over

the system state equations) can be avoided as shown below.

C. PARTIAL PLANT DERIVATIVES

The development outlined below was proposed by Burl [Ref. 7]. A linear, time-invariant dynamic

system may be described as a set of first-order linear differential equations of the form:

IQ) - Ax(r) + Bu(t) (3-27)

where:

17



*(t) - time derivatve of state vector,
x(t) * state vector,
A - system matix,
B - input matrix, and
u() a control input.

The future state of the system can be calculated by integrating Equation (3-17) with respect to time:

X -) = e x() + f eA(-)Bu(;) d (3-28)
0

Equations (3-27) and (3-28) may be discretized over a small interval to form the discrete state

equations:

t(n+1) = Ox(n) - u(n) (3-29)

Matrices A and B have been replaced by their discrete counterparts 0 and r. The discrete state

equations can be solved for an arbitrary number of time steps into the future:

3-1

x(n) = 0 nx(0) + o-*-ru(k) (3-30)
A-0

where n time index.

The partial derivative of the state vector x(n) with respect to the network weights is:

(n) = - (n)au(k) (3-31)

aW k-0[8U;(k) aw]

Since the partial derivative of the control input with respect to the neural network weights is constant

for all time indices, k, the derivative can be written as:

ax(n) ax(n) ]I u (3-32)

The partial derivative of the control input, u, with respect to the weights was given in section B above.

18



From Equation (3-30):

&-I ]ii (3-33)

Equation (3-33) represents a set of vectors, indexed by the time index n, that relate the output state at

time step, n, to the input signal. These values were calculated in MATLAB and placed in a lookup table

for use by the performance index training program. For a given time step, n, the value of propagated

error is:

PANTDER = a(n) & 2(n) (3-34)

The procedure described above incorporates the history of the system over the time step interval

(O,n) for a given n. The calculations ignore the effect of closing the control loop around the plant.

Previous work by Nguyen and Widrow [Ref. 6] utilized only a single step derivative emulated by a neural

network. The results of Nguyen and Widrow can be achieved by setting n = 1 in Equation (3-34).

D. NEURAL NETWORK CONTROL OF THE CER

The neural network described above performs state variable feedback control by implementing

a mapping between the system states and the control law it has been trained with. A diagram of the

control scheme is given in Figure 3.3. The neural network output is passed through a level quantizer

to ensure that thruster control signals are only 1.0. The CER states become the inputs to the neural

network which produces thruster control signals. After training, the neural network produces the same

effect as a nonlinear state feedback controller. The introduction of the quantizer presents a problem in

implementing error back-propagation. The derivative of the output of the quantizer with respect to its

input is zero everywhere except at the origin where it is infinite. This limitation can be a~aided by letting

19
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Figure 3.3 Neural Network Control.

the network error be defined by simply subtracting a quantized state error from the network output at

the final time of the simulation. This additional extension is not needed for pattern matching training

where the network output error is directly measured and back-propagated.

20



IV. NEURAL NETWORK TRAINING

A. TRAINING ENVIRONMENT

The set of programs, data files, and utility routines that support initialization, training, and

evaluation of neural networks make up the training environment. The training environment for the

neural networks investigated in this thesis was composed from several FORTRAN programs written by

the author. Neural net weights and configuration could be stored on disk and recalled for additional

training or analysis. The source code of the programs and supporting files can be found in Appendix

A.

Two measures of the performance of the network, %.- ;rc used, a linear sum of the squared error

over a fixed domain of inputs, Equation (4-1), and a sum of the quantized error, Equation (4-2):

1 0.1 0.1
LSSE = E E [ DESIRED(e,uw) - C(O,w) j2(4-1)

2 e . -0.1 w -

101 0.1 (4-2)
QSSE E - E [DEsiRD(O,w) - siGMC(Osi')l?(422SE=- e.-o.i ,g.-o.i

The linear sum provides a measure of the actual fit of the neural network output to the desired control

signal surface. The quantized error represents a measure of the correctness of the decisions made by

the nL network. The integral of the squared error over the input space is a standard measure of

the performance of a network. The data collected was scaled by a factor of 1000. Both sums were

calculated at periodic intervals during training as a figure of merit for the current set of neural network

weights. The weights of the network with the lowest linear error value were saved in holding cells

during training until they were replaced by the weights of subsequent network with a better error

measure.

21



The state space domain is a square region between -0.1 and +0.1 radians (0) and -0.1 to +0.1

radians per second (w). This region was chosen to approximate the domain of operation used by

Hansen [Ref. 21.

The Frobenius norms of the weight matrices were calculated every 10 training presentations.

These values give a measure of the size of each matrix and were used to monitor the amount and

direction of change over time. Visual evaluation of the performance of the neural network was

illustrated by plotting the output of the neural net over the state space domain. The decision

effectiveness can be shown by plotting the quantized network error over the domain. Three-dimensional

graphics allowed the user to view the data from any angle.

Finally, time simulations of the neural network controlling the CER compared with an optimally

controlled trajectory were conducted to demonstrate on-line performance. The time simulations started

at user-supplied initial conditions and proceeded until the optimal control law reached the origin.

B. INITIAL CONDITIONS

Most of the neural networks used in this research consisted of three input nodes, ten first hidden

layer neurons, five second hidden layer neurons, and a single output neuron. One neuron in each of the

first three layers was designated as a constant neuron at a value of + 1.0. The networks were initialized

using weights randomly picked between 1.0 using a uniform random number generator. It was noted

that the initial weight values assigned cannot all be identical. If the values are the same, the partial

derivatives of the output error is the same for all weights in a layer and no learning occurs [Ref 4].

Neural nets initialized with random weights on smaller intervals were found to be less successful and

slower in learning the desired mapping than those initialized using the 1.0 interval. Learning rates

were varied from 0.5 to 0.001 depending on the performance of the network. Initial learning rates near

0.5 caused rapid learning. Near the end of the useful learning phase small learning rates were used to

avoid instability.
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Figure 4.1 is tne output of a randomly initialized neural network. The output is near zero for the

entire domain of interest due to the random weights and constant neuron bias. When fully trained, the

network output should be (ideally) an exact replica of the control signal surface. The z-direction of the

picture is network output (linear) over the state space (theta-omega) coordinate plane.

1.0

0.0

-1.0 0.1
0.1

0.1

Figure 4.1. Neural Network Output of Randomly Initialized Net.
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Figure 4.2 is the corresponding plot of the quantized error of the network. Ideally the error plot

should be zero over the entire field after training. This neural net has not been trained and has

significant error. The curved cliff-shaped feature corresponds to the trace of the optimal switching curve

from Chapter I. The floor has a value of -2.0 which is the difference between the quantized neural net

output and the optimal control law output at each position in the state space.
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0.1
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Figure 42. Neural Network Error for Randomly Initialized Net.
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Figure 4.3 displays the paths of both the neural network controlled CER (solid) and a CER

controlled by the minimum time control law (dashed). The control law drives the CER from its initial

condition (0.05,0.01) to the center while the neural net drives the CER away from the origin. This

behavior will be modified, by training, to yield substantially better results.
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Figure 4.3. State Space Trajectories of Optimally Controlled (Dashed) and Neural Net Controlled
(Solid) CERs
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C. PATIERN MATCHING

Pattern matching training was conducted on a newly initialized neural network because it provides

rapid learning. When the desired neural net response in known, pattern matching is a directly applicable

technique. Random inputs in the range (-0.1 to +0.1) for both system states were applied to the net

and the network output was compared to the desired optimal control law, equation (4-3).

_ -1.0 ( DEIRED(O,) - C(O,)) (4-3)

ac

This error value was back-propagated into the network as described in Chapter III at each training

presentation. The time advantage of pattern matching over other methods is chiefly due to the

elimination of trial and error by the network. Training a neural net by experience is slower because the

entire system must be simulated. Random inputs are necessary to avoid biasing the network weights

to a specific input region. The error back-propagation rule would minimize the local error instead of

finding a global minimization of the error.

As training progressed, both the linear and quantized error values began to decrease. The

learning rate was initially 0.5 and was gradually reduced to 0.25. Figure 4.4 is the record of error values

for this network. The linear error starts near 500 and decreases as training continues. The large

fluctuations are caused by high learning rates. The error back-propagation algorithm used to train the

network does not attempt to scale the weight changes to get optimum error decrease at each step.

Random inputs and many training cycles combine to drive the system to a global minimum error.

Occasional increases are largely unavoidable. The learning rule attempts to minimize the error at each

presentation but may cause an increase in global error. The quantized error starts at 881 and fluctuates

wildly due to the nonlinearity of the signum function applied to network output Wide swings in the

error values during training can be advantageous if the training program has the weight saving procedure

described in Section A. The best performance of this network during pattern matching training occurred

at trial 970 with a linear error of 93 and a quantized error of 97. The norms of the three weight
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Figure 4.4. Linear and Quantized Error Record During Pattern Matching Training

matices,W,V,andZ,areshowninFigure4.5. Matrix Wis 3 by9matrixthatscalesthestate

variable inputs and the bias input into the first hidden layer neurons. Since the neurons saturate at 1.0

outside of a relatively short span of their inputs, the W matrix normalizes the inputs to this useable

range. If the product of the inputs and the W weights is too large, no training occurs because the

derivative of the neuron would be near zero. Matrix V connects the first and second hidden layers.

Although V is 10 by 4 i-Ls norm is smaller than W, probably because the range of values developed in

the first hidden layer are between 1.0. The norm of matrix Z, a 1 by 5 vector, is the smallest. Growth

of the norms is evident in all phases of training.

Figure 4.6 is the neural network output after 970 training cycles. The network has begun to adapt

* its output to approximate the desired optimal control surface. The initial flat (Figure 4.1) profile has

been replaced by a sloping plane that descends in the positive theta direction.
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Figure 4.5. Norms of Weight Matrices During Pattern Matching Training.

The network error surface is illustrated in Figure 4.7. The central ridge shows the region of the

state space where the sign of the network output is wrong. This plot indicates that the zero-trace of the

neural network function is not coincident with the desired optimal control zero-trace. Network response

in the regions on either side of the ridge is correct.

The error shown in Figure 4.7 causes inaccuracy in controlling the CER. Figure 4.8 displays the

state space trajectory (solid line) that partly overlays the optimal trajectory (dashed line). The incorrect

decision region corresponding to the ridge in Figure 4.7 causes the CER to continue to accelerate past

the optimal switching curve instead of reversing thrust and driving the states to the origin. However,

the improvement in control from that shown in Figure 4.3 is significant. Neural networks are not like

negative feedback loops where the feedback acts to reduce the stimulus to the system. The desired

response must be trained.
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Figure 4.6. Neural Network Output After 970 Pattern Matching Training.

D. PERFORMANCE INDEX TRAINING

Performance index training is a new idea devised to enforce a performance measure on the

combined neural network and physical system. The technique is based on the concept that a neural

network will learn to meet a specified performance goal if it is the only solution to the problem.

Nguyen and Widrow [Ref. 3] have demonstrated that a neural network can be trained to control a

dynamic system to achieve a desired state. However, the control signal mapping learned by their neural

network is largely dependent upon the early training presentations and can vary between different

networks. Performance index training develops a neural network that can be compared with classically

designed control laws in terms of minimizing a specified cost function.
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Figure 4.7. Neural Network Error After Pattern Matching Training.

For this research the cost function to be minimized was the time to reach the origin. Random

initial conditions were applied to a time simulation of the physical system. An estimate of the minimum

time required to reach the origin of the state space was computed based on the initial conditions. For

the minimum time trajectory the estimate can be computed by solving the equations of motion based

on a two-legged trajectory with constant acceleration (in opposite directions) starting at the initial

conditions and terminating at the origin (Figure 4.9).

The time estimate sets the end time of the simulation. The neural network is allowed to control

the CER from time zero until the maximum time estimate is reached. When the maximum time was

reached the simulation was stopped and the final states forms the state error. Optimal performance by

the neural network would drive the system to the origin in exactly the amount of time predicted. Sub-

optimal performance by the neural net results in a non-zero final state. The final state was compared
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Figure 4.8. State Space Trajectories After Pattern Matching Training.

to the desired final state (Equations. 4-4 and 4-5) and the error was back-propagated through the

plant partial derivatives (Eqn. 3-34) here repeated as equation (4-6).

2

aE - 1.0 (-xI - X2) I, - -1.0 (-0 - W)1 ,. (4-5)
ax

DC=SIG (P$aE ) (4-6)

The sign of equation (4-6) can be interpreted as the desired control signal (DC). The desired control

signal was compared to the actual neural network output at the final time (Eqn. 4-6) and this value

(NE) was back-propagated into the network to train the weights.

NE = -1.0[ SlGN(DC) - C(O,,,),.,] (4-'7)
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Figure 4.9. Optimal Trajectory Time Estimation.

Equation (4-7) is the modification to error back-propagation that takes into account the quantizer

between the neural network output and the thruster input.

Linear and quantized error calculations are carried out as before. Figure 4.10 shows the error

values for the neural network described in Section B. The network was trained by pattern matching

first, then subjected to performance index training. The neural network was trained 710 times using

learning rates from 0.05 to 0.02. The network with the best performance yielded a linear error of 67.7

and a quantized error equal to 25. Several networks with a quantized error of 17 were not retained

because their linear error was greater than 67.7. Although numerical improvement of the linear error

is modest, the reduction in quantized error is dramatic. The actual optimal control law was not used
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Figure 4.10. Linear and Quantized Error During Performance Index Training.

to train the neural net in this case. Improvements in the network response are due to the errors in

thruster control signals, integrated over time, and manifested as non-zero final states.

The flattening of the linear error curve may be due to a fundamental limitation of the learning

capacity of a network with only 14 neurons. The size of a network appears to be analogous to the

number of terms in a Taylor or Fourier series. The accuracy of a series representation of a function

increases with an increase in the number of terms being summed. Neural networks also follow this

pattern [Ref. 31. Nets with more neurons are able to approximate arbitrary functions better than smaller

networks. The norms of the weight matrices (Figure 4.11) show little change due to the small learning

rate applied. As the network output approaches the desired function the growth of the weight matrices

will also slow.
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Figure 4.11. Norms of Weight Matrices During Performance Index Training

The neural net output after performance index training (Figure 4.12) shows a more complicated

shape. The maximum and minimum values more closely approximate the desired thruster control signal

values. The curved slope has evolved from the straight slope (observed in Figure 4.6) and is beginning

to be a continuous approximation to the finite discontinuity of the optimal control law. The steepness

of the slope is a function of the number of neurons in the second hidden layer. As more neurons are

added or as the weights increase, the weighted sum appearing at the output neuron will change value

more quickly causing the output to change accordingly.

The output error plot in Figure 4.13 illustrates the accuracy of the learned response. The spikes

depicted are symmetric about the origin of the state space and control signal plane. The zero-trace of

the neural network output closely approximates that of the optimal control law. The neural network
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Figure 4.12. Neural Network Output After Performance Index Training.

has learned the optimal control mapping over most of the state space domain. The zero-trace of the

network output is still approximately a straight line. A network with more neurons may be able to more

closely fit the parabolic shape of the optimal control switching curve.

The state space trajectory shown in Figure 4.14 indicates that the network has learned a near-

optimal control law. The neural net (solid line) turns before the optimal control (dashed). Since any

path is less optimal than the optimal control, the neural net fails to reach the origin in the allotted time.

The improvement in system control from the untrained network shown in Figure 4.3 is significant. The

uncontrolled system has now been replaced with a system that performs with near-optimal precision.

While some of the initial training has taken place with the benefit of full knowledge of the correct

answer, the performance index training has improved the network by virtue of experience and without

the knowledge of the correct answer.
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Figure 4.13. Neural Network Error After Performance Index Training.

E. REAL-TIME ADAPTATION

Performance index training represents a method by which neural networks in real-time control

systems can be adapted to improve their performance while performing their tasks. In the case of the

CER with a payload, the neural net controls the CER until a specified time (based on the initial error)

is exceeded. Non-zero states are then back-propagated and the neural network weights are adjusted.

This process can be repeated until a given performance measure is achieved. If the neural network is

performing in a near-optimal manner initially, it should converge to the correct control law. An

experiment to demonstrate this was conducted on several networks. The networks were initially trained
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Figure 4.14. State Space Trajectories After Performance Index Training.

to control a baseline CER, then allowed to control a CER with twice the original moment of inertia.

Time estimates for this experiment were based on the doubled mass, but the plant partial derivatives

came from the baseline CER values.

Figure 4.15 shows the error surface of the network trained on a baseline CER which produced

Figure 4.13. The optimal control law used to evaluate the error corresponds to the increased mass

CER. Error values for tnis network were computed to be 160 and 55 for linear and quantized measures,

respectively.

The state space trajectories of a double mass CER controlled by the optimal control law and

the baseline trained network are diagrammed in Figure 4.16. The neural network (solid line) now turns

late when compared to the correct control law (dashed line).
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Figure 4.15. Neural Network Error with Doubled Mass CER.

Real-time adaptation of the neural network by performance index training was conducted for 1200

trials. Average length of each trial, in dock time, is 3 seconds. The final linear error has been reduced

to 89.9 with quantized error of 61. Although the quantized error has not been greatly reduced, the

linear error has been halved and the quantized error would also follow in time.

Figure 4.17 shows the neural network output after the training. The slope of the output surface

is noticeably steeper indicating a better fit to the desired response.

Neural network error (Fig. 4.18) again displays symmetric errors. The optimal control law

switching curve for the doubled mass CER does not coincide with the baseline CER. The zero-trace of

the network output is still a straight line; however, the slope of the line has adjusted to best fit the

parabolic shape of the new optimal control law.
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Figure 4.16. State Space Trajectory Before Real-Time Adaptation.

Figure 4.19 shows the state space trajectories for the network after real-time adaptation by

performance index training. The turning point for the neural net-controlled CER (solid line) has moved

to the right of the optimally controlled CER (dashed line). The end states are slightly doser to the

origin than those of Figure 4.16. The trajectory produced by the neural net is better than before in that

overshoot has been reduced. The end velocity of the previous trajectory (Figure 4.16) was increasing

the position error while the end velocity in Figure 4.19 tends to reduce the error. The neural network

has partially adapted to the change in mass.
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Figure 4.17. Neural Network Output After Real-Tune Adaptation.

Real-time adaptation via performance index training may yield intelligent control systems that

constantly adapt themselves to changing system characteristics. The doubled mass experiment could

have also been interpreted as a reduction in thrust. Off-axis payloads in the CER's nets can change

the moment of inertia characteristics of the system. All of the situations described above are

circumstances in which performance index training may be able to yield an adaptive controller that can

overcome unknown system parameter changes. Pattern matching training may be conducted off-line to

give a neural network control system the response characteristic to enable it to immediately control a

system. On-line adaptation can then be implemented to adjust for changing conditions.
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Figure 4.18. Neural Network Error After Real-Time Adaptation.
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Figure 4.19. State Space Trajectories After Real-Tune Adaptation.
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V. CONCLUSIONS AND RECOMMENDATIONS

Artificial neural networks can be trained to control dynamic systems in a near-optimal manner.

Pattern matching training delivers rapid learning when the desired response is known. Performance

index training causes the neural network to adapt to meet the performance goal specified by the

designer. Real-time intelligent control with on-line learning can be implemented via performance index

training.

Future research in the area of applications of neural networks to control systems should focus

on several aspects of real-time intelligent control. A more sophisticated back-propagation algorithm may

reduce the variance of the error calculations and yield a more graceful error reduction curve.

Training a neural network to learn the optimal control law without the quantizer could allow

extended error back-propagation to be used.

Performance index training should be investigated to determine if the concept is general enough

to be applied to multiple performance indices. The multiple index training scheme could be applied to

weighted fuel-time optimal control. Estimates of both the fuel and time required to reach the origin

from arbitrary initial conditions can be used to control the time simulation. Excessive thrusting would

exhaust the fuel allotment and cause the CER to coast. The states at the final time can be back-

propagated to train the network. Arbitration between the time optimal (baseline CER) derivatives and

fuel optimal derivatives could be used to decide on the desired control signal.
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APPENDIX A. COMPUTER PROGRAMS

C PROGRAM PATDATA.FOR
C AUTHOR C. M. SEGURA
C DATE: 1 OCTOBER 1989
C SYSTEM: IBM PC AT
C COMPILER MICROSOFT FORTRAN 4.0
C REVISED: 13 OCTOBER 1989
C
C THIS PROGRAM IMPLEMENTS THE TIME OPTIMAL CONTROL SWITCHING
C CURVE TRAINING OF A NEURAL NETWORK WITH GRAPHIC OUTPUT.
C 3RD NETWORK CONFIGURATION
C DATA EXTRACTION ADDED
$NOTRUNCATE

COMMON /WEIGHT/W,VZW,HFHNETONETOFLFNET
COMMON /SIZE/NINPUTNHIDENOUT
REAL X(21,21),Y(21,21),Z(21,21 ),LNP(10,1),NEURALNETTIMEOPT,LR,

1W(50,10),V(50,50),HF(50,1),HNET(50,1),ONET(50),ERR(21,21),RNG,
2ZW(50),OF(50,1 ),DWN,DVN,DZN,NORMM,NORMV,LSSE,QSSE,BW(50,10),
3BV(50,50),BZ(50)
INTEGER NINPUTNHIDENOUT,MN,COUNT,CHOICEBTRIAL
INTEGER*4 IXTRIAL
CHARACTER*14 FNAMENNAME
CALL GETTIM(IHR,IMIN,ISEC,IHUN)
IX = 1000*IHR + 100*IMIN + 10*ISEC +IHUN

C SET NEURAL NET SIZE
NINPUT - 3
NHIDE= 9
NOUT =2
LR = .5

C SET DATA SPACE SIZE
M =21
N =21

C PROGRAM STATUS AND CONTROL SECTION
100 CALL QCLEAR(0,7)

PRINT *,'PROGRAM NAME: PATDATA.FOR'
PRINT *,'PROGRAM TASK CER TIME OPTIMAL CONTROL LAW W/ DATA'

PRINT *,'NETWORK FILE: ',NNAME,' DATA FILE: ',FNAME
PRINT *,'CONFIGURATION: ',INPUTNHIDENOUT
PRINT *,LEARNING RATE: ',LR,' ITERATIONS: ',TRIAL
PRINT *,'SUM OF SQUARED ERROR ',SSEI,SSE2
PRINT *,' '
PRINT *,'ENTER FUNCTION CODE'
PRINT *,' 1: INITIALIZE NETWORK'
PRINT 1,' 2 SET LEARNING RATE'
PRINT *,' 3: SET OUTPUT FILE'
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PRINT *,' 4: CONDUCT TRAINING'
PRINT *,' 5: VIEW SWITCHING SURFACE'
PRINT *,' 6: VIEW ERROR SURFACE'
PRINT *' 7: VIEW SWITCHING CONTOURS'
PRINT *' 8: PLOT TRAJECTORIES'
PRINT ,' 9. SAVE NETWORK TO A FILE'
PRINT *,' 10: QUIT
READ (*,*)CHOICE
GOTO (200,250,275,300,400,500,600,700,800,900),CHOICE

C INITIALIZE THE NEURAL NETWORK
200 CALL NETINIT(NNAME)

INP(NINPUT,1) = 1.0
TRIAL = 0
SSEI = 0.0
SSE2 = 0.0
LSSE = I.0E5
GOTO 100

c SET LEARNING RATE
250 PRINT *,'ENTER LEARNING RATE'

READ(5,*)LR
GOTO 100

C SELECT OUTPUT DATA FILE NAME
275 PRINT *,'ENTER DATA FILE NAME'

READ(*,*)FNAME
OPEN(10,FILE = FNAME)
GOTO 100

C TRAINING PHASE OF NETWORK
300 PRINT *,'ENTER NUMBER OF ITERATIONS (0 TO STOP)'

READ(*,*)COUNT
C COMMENCE ITERATIONS
C SELECT RANDOM INITIAL CONDITIONS WITHIN BOUNDARIES
C OF-.1<OMEGA<.I, AND-.1 < THETA < .1.
20 INP(I,1) - (UNIF(X)-.5)*.20

INP(2,I) - (UNIF(IX)-.5)*.20
C = NEURALNET(INP)
DES = TIMEOPT(INP(1,l),INP(2,1))
COUNT = COUNT-1
TRIAL = TRIAL + I

C COMPUTE NETWORK ERROR
El = -1.0*(DES - C)

C PRINT *,'INPUT,OUfPUT,DESIRED',INP(l ,l ),INP(2,I ),CDES
C PRINT *,'ERROR',El
C TRAIN NETWORK WEIGHTS

CALL TRAINER(EI,INP)
IF(MOD(TRIAL,10).NE. 0) GOTO 20

C COMPUTE THE ERROR SURFACE BY COMPARING NEURAL NET OUTPUT
C WITH THE ACUTAL SWITCHING CURVE
30 SSEI= 0.0

SSE2 = 0.0
DO 40I = 1,M
DO45J = 1,N
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X(Ij) = FLOAT(I-11)/100.
Y(I,J) = FLOAT(J-11)/100.
mI',) = X(Ij)
INP(2,1) Y(IJ)
Z(IJ) = NEURALNET(INP)
DES = TLMEOPT(X(IJ),Y(IJ))
SSE1 = SSEI + (DES - Z(IJ))**2
ERR(IJ) = DES - SIGN(1.0,Z(IJ))
SSE2 = SSE2 + ERR(IJ)**2.0

45 CONTINUE
40 CONTINUE
C COMPUTE NORMS OF MATRICES

DWN = NORMM(W,50,10,NHIDE-1,NINPUT)
DVN = NORMM(V,50,50,NOUTNHIDE)
DZN = NORMV(ZW,50,NOUT)

C WRITE DATA TO SCREEN AND OUTPUT FILE

50 PRINT 103,TRIALDWNDVNDZNSSEI,SSE2
WRITE(10,103)TRIAL,DWN,DVNDZN,SSEI,SSE2

103 FORMAT(2X,5,5(2X,G12.7))
C CHECK PERFORMANCE AND SAVE BEST WEIGHTS

IF(SSEI .LT. LSSE) THEN
CALL BESTNET(BWBV,BZ)
LSSE = SSEI
QSSE = SSE2
BTRIAL = TRIAL

ENDIF
IF (COUNT) 100,100,20

C PLOT NEURAL NET OUTPUT
400 CALL ROTATE(X,YZ,MN)

GOTO 100
C PLOT ERROR SURFACE
500 CALL ROTATE(X,Y,ERRMN)

GOTO 100
C PLOT NETWORK OUTPUT CONTOURS
600 CALL CONTOUR(XYZ,MN,5)

GOTO 100
C SIMULATE NETWORK CONTROL AND OPTIMAL CONTROL
700 CALL SIMUL

GOTO 100
C SAVE WEIGHTS WITH BEST PERFORMANCE VALUES
800 CALL NETSAVE(BW,BV,BZ)

PRINT *,'BEST PERFORMANCE AT TRIAL ',BTRIAL
PRINT *,'WITH ERRORS ',LSSE,QSSE
PAUSE'
GOTO 100

900 CLOSE(10)
STOP
END

C INCLUDE THESE FILES DURING COMPILATION
$INCLUDE:'UTIL.FOR'
SINCLUDE:'NETWORK3.FOR'
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SINCLUDE:TRAINER3.FOR'
$INCLUDE:'PLOT.FQR'
$INCLUDE:'SIMUL.FQR'
$INCLUDE:'PLANT.FOR'
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C PROGRAM TIMDATA.FOR
C AUTHOR. C. M. SEGURA
C DATE: 10 OCTOBER 1989
C SYSTEM: IBM PC AT
C COMPILER: MICROSOFT FORTRAN 4.0
C REVISED: 22 OCTOBER 1989
C
C THIS PROGRAM IMPLEMENTS THE TIME OPTIMAL CONTROL SWITCHING
C CURVE TRAINING OF A NEURAL NETWORK WITH GRAPHIC OUTPUT.
C 3RD NETWORK CONFIGURATION, PLANT DERIVATIVE COEFFICIENTS
C DATA EXTRACTION ADDED
$NOTRUNCATE

COMMON /WEIGHT/W,V,ZW,HF,HNET,ONET,OF,LRFNET
COMMON /SIZE/NINPUTNHIDENOUT
REAL X(21,21),Y(21,21),Z(21,21),INP(10,1),NEURALNETTIMEOPTLR,
IW(50,10),V(50,50),HF(50,1),HNET(50,1),ONET(50),ERR(21,21),RNG,
2ZW(50),OF(50,1),DWN,DVN,DZN,NORMM,NORMV,LSSEBW(50,10),
3BV(50,50),BZ(50),FNET,CE,BX,BY,DX(270),DXD(270)
INTEGER NINPUT,NHIDENOUT,MN,COUNT,CHOICE,BTRIAL,T,TMAX,SSE2,

1QSSE
INTEGER*4 IXTRIAL
CHARACTER*14 FNAMENNAME
CALL GETTIM(IHR,IMIN,ISEC,IHUN)
IX = 1000*IHR + 100*IMIN + 10*ISEC +IHUN
BX = .0218
BY = 8.734E-4

C SET NEURAL NET SIZE
NINPUT 3
NHIDE = 9
NOUT =2
LR = .5

C SET DATA SPACE SIZE
M =21

N --21
C READ STEPWISE PLANT DERIVATIVE DATA FROM FILE

OPEN(11,FILE = 'PARTI.DAT)
DO 5 I = 1,45

LN = 6*(I-1) + I
HN = LN+5
READ(11,*)(DX(J),J = LN,HN)
READ(11,*)(DXD(K),K = LN,HN)

5 CONTINUE
CLOSE(11)

C PROGRAM STATUS AND CONTROL SECTION
100 CALL QCLEAR(0,7)

PRINT *,PROGRAM NAME: TIMDATA.FOR'
PRINT *,PROGRAM TASK CER TIME OPTIMAL CONTROL LAW W/ DATA'

PRINT *,'NETWORK FILE: ',NNAME,' DATA FILE: ',FNAME
PRINT *,'CONFIGURATION: ',NINPUTNHIDENOUT
PRINT *,'LEARNING RATE: ',LR,' ITERATIONS: ',TRIAL
PRINT *,'SUM OF SQUARED ERROR ',SSE1,SSE2
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PRINT *,'
PRINT *,'ENTER FUNCTION CODE'
PRINT* 1: INITIALIZE NETWORK'
PRINT * Z: SET LEARNING RATE'
PRINT ' 3: SET OUTPUT FILE'
PRINT,' 4: CONDUCT TRAINING'
PRINT *' 5: VIEW SWITCHING SURFACE'
PRINT * 6: VIEW ERROR SURFACE'
PRINT * 7: VIEW SWITCHING CONTOURS'
PRINT *,' 8: PLOT TRAJECTORIES'
PRINT *' 9: SAVE NETWORK TO A FILE'
PRINT *,' 10: QUIT'
READ (*,*)CHOICE

GOTO (200,250,275,300,400,500,600,700,800,900),CHOICE
C INITIALIZE THE NEURAL NETWORK
200 CALL NETINIT(NNAME)

INP(NINPUT,I) = 1.0
TRIAL = 0
SSEI = 0.0
SSE2 0
LSSE L.0E5
GOTO 100

C SET LEARNING RATE
250 PRINT *,'ENTER LEARNING RATE'

READ(5,*)LR
GOTO 100

C SELECT OUTPUT DATA FILE NAME
275 PRINT *,'ENTER DATA FILE NAME'

READ(*,*)FNAME
OPEN(10,FILE =FNAME)
GOTO 100

C TRAINING PHAaE OF NETWORK
300 PRINT *,'ENTER NUMBER OF ITERATIONS (0 TO STOP)'

READ(*,*)COUNT
C COMMENCE ITERATIONS
C SELECT RANDOM INITIAL CONDITIONS WITHIN BOUNDARIES
C OF -.1 <OMEGA<.I, AND -.1 < THETA < .1.
20 INP(1,I) = (UNIF(IX)-.5)*.2

INP(2,1) = (UNIF(IX)-.5)*.2
C ESTIMATE TIME FROM INITIAL CONDITIONS

TMAX = TIMEST(INP(l,I),INP(2,1))/.0l
C PERFORM SIMULATION FROM TIME ZERO TO TIME MAXIMUM

DO 25 T = 0,TMAX
C = SIGN(I.0,NEURALNET(INP))
CALL CER(INP(1,1),INP(2,1),C)

25 CONTINUE
COUNT = COUNT-1
TRIAL = TRIAL + I

C COMPUTE DESIRED CONTROL SIGNAL
DC = -1.0*(DX(TMAX)*INP(1,1) + DXD(TMAX)*INP(2,1))

C PRINT *,'INPUT,OUTPUTDESIRED',INP(1,1),INP(2,1),CDES
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C PRINT -,'ERROR',El
E = .1.0*(SIGN(1.O.DC) - NEURALNET(INP))
CALL TRAINER(E,INP)
IF(MOD(TRIAL,10).NE. 0) GOTO 20

C COMPUTE THE ERROR SURFACE BY COMPARING NEURAL NET OUTPUT
C WITH THE ACUTAL SWITCHING CURVE
30 SSEl=0.0

SSE2 =0

DO 401 = 1,M
DO045 J = 1,N

X(Ij) = FLOAT(I-11)/100.
Y(14J) = FLOAT(J-11)/100.

mN(1,1) =X(lIJ)

INP(2,1) =Y(14)

Z(I,J) = NEURALNET(INP)
DES =TIMEOPT(X(IJ),Y(IJ))

SSEI SSEI + (DES - Z(IJ))**2
ERR(I,J) = DES - SIGN(1.OZ(IJ))
SSE2 = SSE2 + ERR(IJ)**2.0

45 CONTINUE
40 CONTINUE
C COMPUTE NORMS OF MATRICES

DWN =NORM[M(W,50,10,NHIDE-lNINPUT)

DVN =NORMM(V,50,50,NOUTNHIDE)

DZN =NORMV(ZW,50,NOUT)

C WRITE DATA TO SCREEN AND OUTPUT FILE
50 PRINT 103,TRIALDWNDVNDZN,SSE1,SSE2

WRITE(10,103)TRIAL,DWN,DVN,DZN,SSEI,SSE2
103 FORM[AT(2X,15,4(2X,GlO.5),2X,15)
C TEST FOR BEST PERFORMING WEIGHTS

IF(SSE1 I-T. LSSE) THEN
CALL BESTNET(BW,BV,BZ)
LSSE =SSE1

QSSE =SSE2

BTRIAL = TRIAL
ENDIF
IF (COUNT) 100,100,20

C PLOT NEURAL NET OUTPUT
400 CALL ROTATE(XYZ,MN)

GOTO 100
C PLOT ERROR SURFACE
500 CALL ROTATE(X,Y,ERR,MN)

GOTO 100
C PLOT NEURAL NETWORK OUTPUT CONTOURS
600 CALL CONTOUR(X,YZ,MN,5)

GOTO 100
C TIME SIMULATION OF CER WITH NETWORK AND OPTIMAL CONTROL
700 CALL SIMUL

GOTO 100
C SAVE BEST PERFORMING WEIGHTS
800 CALL NETSAVE(BWBVBZ)
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PRINT *,'BEST PE~RFORMANCE AT TRIAL ',BTRIAL
PRINT *,WITH ERRORS ',LSSE,QSSE
PAUSE'1
GOTO 100

900 CLOSE(10)
STOP
END

C INCLUDE THESE FILES AT COMPILATION
SINCLUJDE:'UTI]L.FOR'
$INCLUDE:'NETIWORK3.FOR'
SINCLUJDE:TRAINER3.FOR'
$INCLUDE:'PLOT.FOR'
SINCLUDE:'SIMUL.FOR'
$INCLUDE:'PLANT.FOR'
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C FILE NETWORK3.FOR
C AUTHOR: C. M. SEGURA
C DATE: 9 OCTOBER 1989
C SYSTEM: IBM PC AT
C COMPILER. MICROSOFT FORTRAN 4.0
C REVISED: 4 DECEMBER 1989
C
C THIS FILE CONTAINS NEURAL NETWORK ROUTINES USED TO CREATE
C AND OPERATE NEURAL NETWORKS.
C 3RD CONFIGURATION VERSION
C
C *********************************************

C VARIABLE DEFINITIONS
C
C NINPUT NUMBER OF INPUT NODES
C NHIDE NUMBER OF IST HIDDEN LAYER NEURONS
C NOUT NUMBER OF 2ND HIDDEN LAYER NEURONS
C INP0 INPUT VECTOR
C W(,) INPUT TO 1ST HIDDEN LAYER WEIGHTS
C HNET( ACTIVATION VALUE OF 1ST HIDDEN LAYER NEURONS
C HF(,) OUTPUT VALUES OF 1ST HIDDEN LAYER NEURONS
C V(,) 1ST HIDDEN TO 2ND HIDDEN LAYER WEIGHTS
C ONET 0  2ND HIDDEN LAYER ACTIVATION VALUES
C OF(,) OUTPUT VALUES OF 2ND HIDDEN LAYER NEURONS
C ZO 2ND HIDDEN LAYER TO OUTPUT NEURON WEIGHTS
C FNET OUTPUT NEURON ACTIVATION VALUE
C DOT DOT PRODUCT FUNCTION
C LR LEARNING RATE
C
C *******************************************

REAL FUNCTION SIGMOID(NET)
C THIS FUNCTION EVALUATES THE SIGMOID TRANSFER CHARACTERISTIC
C
C SIGMOID VALUE OF NEURON OUTPUT
C NET INPUT SIGNAL TO NEURON
C NEURALNET OUTPUT OF NEURAL NETWORK
C

REAL NET
SIGMOID = 2.0/(1.0 + EXP(-NET)) - 1.0
RETURN
END

C *********

C THIS FUNCTION EVALUATES THE OUTPUT OF THE NEURAL
C NETWORK.
C

REAL FUNCTION NEURALNET(INP)
COMMON/WEIGHT/W,V,Z,HF,HNET,ONET,OF,LRFNET
COMMON/SIZEININPUTNHIDE,NOUT
REAL W(50,10),V(50,50),HNET(50,1),HF(50,1),LR,ONET(50),DOT,

IINP(10,1),Z(1,50),OF(50,1),FNET
INTEGER NHIDENOUTNINPUT
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C COMPUTE HIDDEN LAYER INPUTS AND OUTPUTS
DO 10 1 = INHIDE-I

HNET(II) = D0T(W,.50,I0,INP,10,I,I,I )

HF(I,I) = SIGMOID(HNET(I,I))
10 CONTINUE

HF(NHIDEI) = 1.0
NEURALNET = 0.0

C COMPUTE 2ND HIDDEN LAYER INPUTS AND OUTPUTS
DO 30 I = INOUT-1

ONET(i) =DOT(V,50,50,HF,50,!,I,1)
OF(I,I) = SIGMOID(ONET(I))

30 CONTINUE
OF(NOUT,1)= 1.0

C COMPUTE OUTPUT VALUE
FNET = DOT(Z,I,50,OF,50,1,II)
NEURALNET = SIGMOID(FNET)
RETURN
END

C *********
C THIS SUBROUTINE INITIALIZES THE NEURAL NET WEIGHTS TO RANDOM
C VALUES OR READS THE WEIGHTS FROM A SPECIFIED FILE.
C
C FNAME NEURAL NETWORK FILE NAME VARIABLE
C RNG RANGE OF RANDOM WEIGHT ASSIGNMENTS
C IHRIMIM,ISEC,IHUN REAL TIME CLOCK FOR RANDOM SEED
C UNIF UNIFORM RANDOM NUMBER GENERATOR
C IX RANDOM NUMBER SEED
C CHOICE USER DECISION VARIABLE
C

SUBROUTINE NETINIT(FNAME)
COMMON /WEIGHT/W,V,Z,HF,HNETONETOFLRFNET
COMMON /SIZE/NINPUT,NHIDENOUT
REAL W(50,10),V(50,50),HF(50,1),HNE'-;50,1),ONET(50),LIRNG,

IZ(1,50),OF(50,l)
INTEGER NINPUT,NHIDENOUT,IHRIMIN,ISECIHUN,CHOICE
INTEGER*4 IX
CHARACrER*14 FNAME
CALL GETrIM(IHIMIN,ISEC,IHUN)
IX = 1000*IHR + 100*IMIN + 10*ISEC + IHUN
PRINT *,'ENTER I FOR SAVED WEIGHTS OR 2 FOR RANDOM WEIGHTS'
READ(5,*)CHOICE
IF (CHOICE .EQ. 1) THEN

C READ SAVED WEIGHTS FROM A FILE
PRINT *,'ENTER WEIGHT FILE NAME'
READ(5,*)FNAME
OPEN(2,FILE = FNAME)
READ(2,*)NINPUT,NHIDE,NOUT
DO 10 1 = INHIDE-I

READ(2,*)(W(I,J) = 1,NINPUT)
C PRINT *,'IW(IJ)',I,(W(I,J),J = 1,NINPUT)
10 CONTINUE
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DO 151I = 1,NOUT-l
READj(2Z*)(V(I4)4J = 1,NHIDE)

C PRINT *,'IV(IJ)',I,(V(I,J = 1,NHIDE)
15 CONTINUJE

READ(2,*)(Z(1,I),l = 1,NOUT)
CLOSE(2)

ELSE
C IN1TIALIZE WITH RANDOM WEIGHTS

FNAME = 'RANDOM'
PRINT *,'ENTER THE NETWORK CONFIGURATION # INPUT, # HIDDEN,'
PRINT *,'AND # OUTPUT NEURONS'
pPEJ)(5*)NINPUT,IflE,NOUT
PRINT *,'ENTER THE RANGE OF WEIGHTS (-R, +R)'
READ(5,*)RNG
DO 20 1 = 1,NHIDE-I

DO 251J = 1,NINPUT
W(Ij) = (UNIF(Dx)-.5)*RNG*2.0

25 CONTINUE
C PRINT *,'W(14)',I,(W(IJ),J = 1,NINPUT)
20 CONTINUE

DO 30 1= 1,NOUT-1
DO 35 J=INHIDE

V(14J) =(UNIF(IX)-.5)*RNG*2.o

35 CONTINUE
C PRINT *,'V(IJ)',I,(V(IJ),J = 1,NHIDE)
30 CONTINUE

DO 40 I1 INOUT
Z(1,1) (UNIF(IX)-.5)*RNG*2.0

40 CONTINUE
ENDIF
RETURN
END

C *****
C THIS SUBROUTINE SAVES THE WEIGHTS FROM A NEURAL NETWORK IN A C
USER SUPPLIED FILENAME
C

SUBROUTINE NETSAVE(WVZ)
COMMON ISIZE/NINPUTNHIDE,NOUT
REAL W(50,10),V(50,50),Z(1,50)
CHARACTER*14 FNAME

PRINT*,'ENTER DATA FILE NAME'
READ *,)FNAME
OPEN(3,FILE = FNAME)
WRITE(3,*)NINPUr,NHIDE,NOUT
DO 10 I= 1,,NHIDE-1

WRrrE(3,*)(W(1J)4 = I,NWNUT)
10 CONTINUE

DO 20 I = 1,NOUT-l
WRrrE(3,*)(V(I,J),J = ,NHIDE)

20 CONTINUE
WRrrE(3,*)(Z(l,I),I = INOUTr)
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CLOSE(3)
RETURN
END

C *********

C THIS SUBROUTINE SAVES THE OPTIMUM WEIGHTS
C
C BW BEST W WEIGHTS
C BV BEST V WEIGHTS
C BZ BEST Z WEIGHTS
C

SUBROUTINE BESTNET(BWBVBZ)
COMMON /SIZE/NINPUTNHIDENOUT
COMMON /WEIGHT/WVZHF,HNETONETOFLRFNET
REAL W(50,10),V(50,50),Z(1,50),HF(50,I),HNET(50,1),ONET(50),LR,

IOF(50,l),BW(50,10),BV(50,50),BZ(50),FNET
CHARACTER*14 FNAME

DO 10 I= ,NHIDE-1
DO 15 J = ININPUT

BW(I,J) = W(IJ)
15 CONTINUE
10 CONTINUE

DO 20 1 = INOUT-I
DO 25 J = 1,NHIDE

BV(IJ) = V(IJ)
25 CONTINUE
20 CONTINUE

DO 30 I = INOUT
BZ(I) = Z(1,I)

30 CONTINUE
RETURN
END
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C FILE TRAINER3.FOR
C AUTHOR: C. M. SEGURA
C DATE: 9 OCTOBER 1989
C SYSTEM: IBM PC AT
C COMPILER: MICROSOFT FORTRAN 4.0
C REVISED: 9 OCTOBER 1989
C
C THIS FILE HOLDS THE ROUTINES THAT IMPLEMENT ERROR BACK
C PROPAGATION FOR A NEURAL NETWORK.
C 3RD CONFIGURATION VERSION
C
C
C THIS SUBROUTINE IMPLEMENTS THE ERROR BACK-PROPAGATION
C METHOD OF TRAINING.
C
C VARIABLE DEFINITIONS
C
C DELEC DERIVATIVE OF ERROR WRT OUTPUT (C)
C DELF BACK-PROPAGATED OUTPUT ERROR (THROUGH
C OUTPUT NEURON)
C DZ CHANGE IN Z WEIGHTS
C DELTAO() DERIVATIVE ACROSS 2ND HIDDEN LAYER NEURONS
C DV CHANGE IN V WEIGHTS
C DELCH DERIVATIVE OF ERROR BACKED TO 1ST HIDDEN LAYER
C DELTAH DERIVATIVE ACROSS IST HIDDEN LAYER NEURONS
C r)w CHANGE IN W WEIGHTS
C LR LEARNING RATE
C

SUBROUTINE TRAINER(DELEC,INP)
COMMON/WEIGHT/WZ, HF,HNET,ONET,OFLR,FNET
COMMON/SIZE/NINPUT,NHIDE,NOUT
REAL DELECDELTAO(50),DELTAH(50),LR,W(50,10),V(50,50),HF(50,I),

IDV(50,50),INP(10,1),ONET(50),HNET(50,1),Z(I,50),OF(50,1),
2DZ(50),DW(50,10),DELCH(50),FNET,DELF
INTEGER I

C COMPUTE Z COEFFICIENT CHANGES AND PROPAGATED ERROR
DELF = DELEC*SIGDER(FNET)
DO 10 1 1,NOUT-1

DZ(I) - DELF*OF(I,1)*LR
DELTAO(I) = SIGDER(ONET(I))

10 CONTINUE
DZ(NOUT) = DELF*OF(NOUT,I)*LR

C PRINT *,DZ',DZ(I)
C COMPUTE V COEFFICIENT CHANGES

DO 20 1 = I,NOUT-1
DO 25 J = INHIDE

DV(I,J) = DELF*DELTAO(I)*Z(1,I)*LR*HF(J,I)
C PRINT *,'DV',DV(IJ)
25 CONTINUE
20 CONTINUE
C COMPUTE W COEFFICIENT CHANGES
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DO 30 I1=I,NHIDE-I
DELCH(I) = 0.0
DO 35 K = 1,NOUT-I

DELCH(I) = DELCH(I) + V(KI)*Z(lK)*DELTAO(K)
35 CONTINUE

DELTAH(1) = SIGDER(HNET(I,1))
C PRINT *,'DELTAH',DELTAH(1)

DO40J = ININPUT
DW(IJ) = DELF*INP(J,1)*DELCH(I)*DELTAH(I)*LR

C PRINT *,'W,I,',W(1,),I,
40 CONTINUE
30 CONTINUE
C UPDATE Z MATRIX WEIGHTS

DO 501 = INOUT
Z(I,I) = Z(1,I) - DZ(I)

50 CONTINUE
C UPDATE V MATRIX WEIGHTS

DO 60 I = I,NOUT-1
DO 65 J = 1,NHIDE

V(I,J) = V(IJ) -DV(IJ)
C PRINT *,'V(IJ)',V(I.J)
65 CONTINUE
60 CONTINUE
C UPDATE W MATRIX WEIGHTS

DO 701 = 1,NHIDE-1
DO 75 J = ININPUT

W(l.) = W(IJ) - DW(IJ)
75 CONTINUE
70 CONTINUE

RETURN
END

C *********
REAL FUNCTION SIGDER(NET)

C THIS FUNCTION EVALUATES THE DERIVATIVE OF THE SIGMOID
REAL NET

C ALPHA = 1.0
SIGDER = 2.0*EXP(-NET)/(I.0 + EXP(-NET))**2
RETURN
END
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C FILE PLANT.FOR
C AUTHOR. C. M. SEGURA
C DATE: 28 AUGUST 1989
C SYSTEM: IBM PC AT
C COMPILER MICROSOFT FORTRAN 4.0
C REVISED: 4 OCTOBER 1989
C
C THIS FILE CONTAINS THE PLANT DYNAMICS AND ASSORTED ROUTINES
C REQUIRED TO SIMULATE THE CREW/EQUIPMENT RETRIEVER.
C
C **********************************************

C VARIABLE DEFINITIONS
C
C X INPUT VALUE OF STATE THETA
C XDOT INPUT VALUE OF STATE OMEGA
C **********************************************

C
C THIS FUNCTION IMPLEMENTS THE TIME OPTIMAL CONTROL LAW
C
C S VALUE OF SWITCHING FUNCTION
C TIMEOPT THRUSTER CONTROL SIGNAL
C

REAL FUNCTION TIMEOPT(XXDOT)
S = X + XDOT*ABS(XDOT)/32976
IF(S LT. 0.0) TIMEOPT = 1.0
IF(S .EQ. 0.0) TIMEOPT = 0.0
IF(S .GT. 0.0) TIMEOPT = -1.0
RETURN
END

C *********

C THIS SUBROUTINE CALCULATES THE NEXT STATE OF THE SYSTEM
C GIVEN THE PRESENT STATE AND THE CONTROL INPUT
C
C U CONTROL SIGNAL
C

SUBROUTINE CER(XXDOT,U)
REAL X,XDOT,U
X = X + .01*XDOT + 8.245E'6*U
XDOT = XDOT + 1.6488E'3*U
RETURN
END

C ********s

C THIS FUNCTION ESTIMATES THE TIME REQUIRED TO TRAVERSE THE
C MINIMUM TIME TRAJECTORY
C
C TIMEST VALUE OF TIME
C A TORQUE DIVIDED BY MOMENT OF INERTIA

REAL FUNCTION TIMEST(XXDOT)
REAL AQDO
A = .16488
TIMEST = SIGN(I.0,X)*XDOT/A +2.0*SQRT(ABS(X/A)+.5*(XDOT/A)**2)
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RETURN
END
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C FILE PLANT2.FOR
C AUTHOR. C. M. SEGURA
C DATE: 10 OCTOBER 1989
C SYSTEM: IBM PC AT
C COMPILER MICROSOFT FORTRAN 4.0
C REVISED: 10 OCTOBER 1989
C THIS FILE CONTAINS THE PLANT DYNAMICS AND ASSORTED ROUTINES
C REQUIRED TO SIMULATE THE CREW/EQUIPMENT RETRIEVER.
C DOUBLE MASS CER
C
C
C TIME OPTIMAL CONTROL LAW

REAL FUNCTION TIMEOPT(X,XDOT)
S = X + XDOT*ABS(XDOT)/(.16488)
IF(S .LT. 0.0) TIMEOPT = 1.0
IF(S .EQ. 0.0) TIMEOPT = 0.0
IF(S .GT. 0.0) TIMEOPT - -1.0
RETURN
END

C ********
SUBROUTINE CER(X,XDOT,U)
REAL XXDOT,U
X = X + .01*XDOT + 4.122e-6*U
XDOT = XDOT + 8244E-4*U
RETURN
END

C
REAL FUNCTION PLANTDERP(,XDOT)
PLANTDER = 4.122E-6*X + 8.244E-4*XDOT
RETURN
END

C
REAL FUNCTION TIMEST(XXDOT)
REAL A)XQUOT
A = .08244
TIMEST = SIGN(I.0,X)*XDOT/A +2.0*SQRT(ABS(X/A)+.5*(XDOT/A)**2)
RETURN
END
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c FILE PLOT.FOR
C AUTHOR- C. M. SEGURA
C DATE: 17 AUGUST 1989
C SYSTEM: IBM PC AT
C COMPILER: MICROSOFT FORTRAN 4.0
C REVISED: 5 DECEMBER 1989
C
C THIS FILE CONTAINS FORTRAN SUBROUTINES USED TO AUTO-
C SCALE AND PLOT DATA AS 3-D SURFACES, 2-D TRAJECTORIES AND
C 2-D CONTOUR PLOTS. ALL SUBROUTINES BEGINNING WITH '0' ARE
C FROM THE GRAFMATIC PLOTTING LIBRARY
C
C
C VARIABLE DEFINITIONS
C X(,) X DIRECTION VALUES
C Y(,) Y DIRECTION VALUES
C Z(, ) SURFACE TO BE PLOTTED
C THETA PLOT ROTATION ANGLE
C PHI PLOT ROTATION ANGLE
C XMIN,XMAX RANGE OF X VALUES
C YMIN,YMAX RANGE OF Y VALUES
C ZMINZMA Y RANGE OF Z VALUES
C PMINPMAX ROTATED PLOT RANGE
C QMIN,QMAX ROTATED PLOT RANGE
C

SUBROUTINE ROTATE(X,YZ,MN)
REAL X(21,21),Y(21,21),Z(21,21),PMINPMAXQMIN,QMAXPHITHETA
INTEGER M,N
XMIN = X(1,1)
YMIN = Y(1,l)
ZMIN = Z(1,1)
XMAX = XMIN
YMAX = YMIN
ZMAX = ZMIN
PHI =-45.0
THETA = 5.0
DO 10 I = 1,M

DO 15 J = i,N
IF (X(I,J) LT. XMIN) XMIN = X(IJ)
IF (Y(IJ) LT. YMIN) YMIN = Y(I,J)
IF (Z(IJ) LT. ZMIN) ZMIN = Z(IJ)
IF (X(IJ) .GT. XMAX) XMAX = X(IJ)
IF (Y(IJ) .GT. YMAX) YMAX = Y(IJ)
IF (Z(IJ) .GT. ZMAX) ZMAX = Z(IJ)

15 CONTINUE
10 CONTINUE

ZSTEP = 1.0
XSTEP = .1
YSTEP = .1
IF ((ZMAX-ZMIN).GT. 4.0) ZSTEP = 2.0
IF ((XMAX-XMIN).GT. 1.0) XSTEP = .5
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IF ((YMAX-YMIN).GT. 1.0) YSTEP = .5
ZMAX =FLOAT(INT(ZMAX) + 1)
ZMIN =FLOAT(INT(ZMIN)-1)

C SET SCREEN MODE TO CGA,4-COLOR
20 CALL QSMODE(4)
C ROTATE DATA AND ESTABLISH SCREEN WINDOW

CALL Q3DROT(XYZ,MN,PHITHETA)
CALL Q3DWNQMAXYMANYMXZMINZMAXPMIPMNALXQMIN,QMAX)
IOPT =
YOVERX = (QMAX-QMIN)/(PMAX-PMIN)
XORG = XMIN
YORG = YMIN

C SET PLOTITING PARAMETERS
CALL QPLOT(50,300,30,170,PMINPMAXQMIN,QMAX,

IXORG,YORG,IOPT,YOVERX,1.5)
C PLOT X, Y, AND Z AXES THEN PLOT ROTATED SURFACE
C Q3DINV INVERTS ROTATION TO PREPARE FOR NEXT PLOT
40 CALL Q3DXAX(XMINXMAX,XSTEP,1,1 ,1 ,YMIN,YMAXZMIN,1 .0)

CALL Q3DYAX(YMIN,YMAX,YSTEP,1,1 ,1 XMINXMAXZMIN,1 .0)
CALL Q3DZAX(ZMINZMAXZSTEP,1,-1,1 ,XMIN,YMIN,1 .0)
CALL Q3DFR(XKY,MN,2,I)
CALL Q3DINV(X,YZMN)
PAUSE '
CALL QSMODE(2)
PRINT *,'ENTER NEW ANGLES PHI & THETA (DEG) OR (-999,0) TO QUIT'
READ(5,*)PHI,THETA
IF (PHI JNE. -999.) GOTO 20
RETURN
END

C*****
C CONTOUR PLOTTING SUBROUTINE
C
C NUMCON NUMBER OF CONTOURS
C IDEF CONTOUR VALUE FLAG
C XAYA 2-D RANGE OF DATA
C
C

SUBROUTINE CONTOUR(X,YZ,MNJUMCON)
REAL X(MN),Y(MN),Z(MN),XSCALEVALUES(I0),LBL(I0)
DIMENSION XA(100),YA(100)
INTEGER NUMCONIDEF
XSCALE = 1.5
IDEF = 0
DO 10 I = 1,M

XA(I) = X(I,)
10 CONTINUE

DO 20J = IN
YA(J) = Y(14)

20 CONTINUE
ZMIN =Z(1,1)

ZMAX =ZMIN
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DO 301 = 1,M
DO035J = I,N

IF(Z(I.J) LT. ZMIN) ZMIN = Z(IJ)
IF(Z(I,J) .GT. ZMAX) ZMAX = Z(IJ)

35 CONTINUE
30 CONTINUE
C COMPUTE CONTOUR SPACING

DELZ = (ZMAX-ZMIN)I(NUMCON+l)
DO040 1 = 1.NUCON

VALUES(l) = ZMIN + I*DELZ
LBL(I) = 1.0

40 CONTINUE
C SET SCREEN MODE TO CGA HIGH RESOLUTION (B/1W) AND
C PLOT DATA WITH AXES

CALL QSMODE(6)
CALL QCNTOU(XSCALEXA,YtAZVALU-SLBL,MNNUMCON,IDEF)
CALL QXAXIS(XA(I),XA(M),.1,1,-1,1)
CALL QYAXIS(YA(l),YA(N),.1,1,-l,1)
PAUSE '
CALL QSMODE(2)
RETURN
END
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C FILE SIMUL.FOR
C THIS PROGRAM SIMULATES THE CREW/EQUIPMENT RETRIEVER WITH
C TIME OPTIMAL CONTROL LAW. CER DYNAMICS ARE IN SUBROUTINE
C CER. CONTROL LAW IS IN FUNCTION TIMEOPTO. ALSO PLOTTED IS
C THE TRAJECTORY CONTROLLED BY A NEURAL NETWORK
C AUTHOR C. M. SEGURA
C DATE: 28 AUGUST 1989
C SYSTEM: IBM PC AT
C COMPILER. MICROSOFT FORTRAN 4.0
C REVISED: 1 OCTOBER 1989
C

SUBROUTINE SIMUL
REAL X(2),U,Y(3),THETAOMEGADT BX(5),BY(5),

IXC(270),XCD(270),XN(270),XND(270),NEURALNET,TIMEOPT
INTEGER TMAX
DATA BX/-.0218,-.0218,.0218,.0218,-.0218/
DATA BY/-.00087,.00087,.00087,-.00087,-.00087/
DT = .01

C INITIAL CONDITIONS
5 PRINT *,'ENTER INITIAL CONDITIONS, THETA AND OMEGA, -9 TO QUIT'

READ(5,*)THETA,OMEGA
IF(THETA .EQ. -9.0) RETURN
X(1) = THETA
X(2) = OMEGA
Y(1) = THETA
Y(2) = OMEGA
Y(3) = 1.0
XC(I) = X(I)
XCD(1) = X(2)
XN(1) = Y(1)
XND(1) = Y(2)
TMAX = TIMEST(THETA,OMEGA)/.01 + 1
DO 10 1 = 2,TMAX

U = TIMEOPT(X(1),X(2))
CALL CER(X(l),X(2),U)

C = SIGN(1.0,NEURALNET(Y))
CALL CER(Y(1),Y(2),C)

XC(I) = X(I)
XCD(I) = X(2)
XN(I) = Y(I)
XND(I) = Y(2)

10 CONTINUE
C PLOTTING STATEMENTS

XMIN = -.1
XMAX = .1
YMIN = -.1
YMAX = .I
JOPT = 0
CALL QSMODE(4)
JCOL1 = 50
JCOL2 = 250
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JROWI = 10
JROW2 = 170
YOVERX =1.0

ASPECr 1.5
CALL QPLOT(JCOL14ICOL2,JRQWI4ROW2cMINXMAvXYMINYNAx,

1.0,0.0,IOPTYOVERXASPECr)
CALL QXAXIS(XNXMAY.05,1,O,O)
CALL QYAXIS(YMJN,YMAX..05,1 ,0,0)
CALL QPTXTB(5,-rHETA',3)
CALL QPTXTC(5,'OMEGA',3)
CALL QSETUP(0,1,-21I)
CALL QPTxT(1 ,',,0,24)
CALL QTABL(1 TMAXXCXCD)
CALL QSETIJP(0,2,-2,2)
CALL QPTX(1,'N',2,,23)
CALL QTABL(1 TMAXIXNXND)
CALL QSETUP(O,2,-2,3)
CALL QTABL(1,5,BXBY)
PAUSE '
CALL QSMODE(2)
GOTO 5
RETURN
END
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C FILE UTIL.FOR
C AUTHOR: C. M. SEGURA
C DATE: 17 AUG 1989
C SYSTEM: IBM PC AT
C COMPILER. MICROSOSFT FORTRAN 4.0
C REVISED: I OCTOBER 1989
C
C THIS FILE CONTAINS UTILITY PROGRAMS NEEDED TO RUN NEURAL C NETS
C
C *********

REAL FUNCTION UNIF(IX)
C PORTABLE RANDOM NUMBER GENERATOR USING THE RECURSION:
C IX = 16807*IX MOD(2**31-1)
C USING ONLY 32 BITS, INCLUDING SIGN.
C INPUT IX = INTEGER GREATER THAN 0 LESS THAN 2147483647
C OUTPUT IX NEW VALUE
C UNIF = RANDOM REAL NUMBER BETWEEN 0 AND 1
C Adapted from: A GUIDE TO SIMULATION by Bratley, Fox, and
C Schrage; Springer-Verlag, New York, 1983. pg 319

INTEGER*4 IXKI
KI = IX/127773
IX = 16807*(IX-KI*127773)'KI*2836
IF(IX .LT. 0) IX = IX+2147483647
UNIF = IX*4.656612875E'10
RETURN
END

C
C COMPUTES DOT PRODUCT OF TWO VECTORS

REAL FUNCTION DOT(AARAC,B,BRBC,ROW,COL)
INTEGER ARACBRBC,ROWCOL
REAL A(ARAC),B(BRBC)
DOT = 0.0
DO 10 1 = lAC

DOT = DOT + A(ROW,I)*B(I,COL)
10 CONTINUE

RETURN
END

C *********

C THIS FUNCTION COMPUTES THE NORM OF A VECTOR
REAL FUNCTION NORMV(AARL)
INTEGER ARL,I
REAL A(AR)
NORMV = 0.0
DO0I = 1,L
NORMV - NORMV + A(I)**2

10 CONTINUE
NORMV = SQRT(NORMV)
RETURN
END

C *********
C THIS FUNCTION COMPUTES THE NORM (COLUMN-WISE) OF A MATRIX
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REAL FUNCTION NORMM(A,ARACLW)
INTEGER ARAC,WL
REAL A(ARAC)
NORMM = 0.0
DO 10 I = 1,W

DO20J = 1,L
NORMM = NORMM + A(J,I)**2

20 CONTINUE
10 CONTINUE

NORMM = SQRT(NORMM)
RETURN
END
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This is the format of a network weight file. The first line indicates the network configuration

as three inputs, 10 first hidden layer neurons, and five second hidden layer neurons. The single

output neuron is assumed.

Following the configuration data is a list of the weights for each of the three weight matrices.

The subroutine NETINIT uses the configuration data to partition the remaining information in the

file into the three weight matrices.

3 10 5
-13.906620 -2.940447 4.978316E-02
-7.214338 -6.484410E-01 3.074306E-02
-1.656613 5.949540E-01 -1.231645E-02

4.014902E-01 2.472410E-01 1.685382E-02
5.252939 1.217185 -1.283479E-02
2.707932 1.246534 5.219876E-03

-8.908709 -1.938318 3.536274E-02
-5.286425 -1.283191 8.932211E-03
-2.405496 -7.347796E-01 2.773683E-02

2.907092E-02 -8.334237E-01 5.596985E-01 -1.078840
2.512622E-01 1.562133E-01 3.469862E-02 8.748630E-01

-2.293951E-01 6.681408E-02
-3.158125 -1.767610 -1.202942 5.020352E-01
1.237375 9.950187E-01 -2.616258 -4.080161E-01

6.180473E-02 -6.841267E-02
-1.185558 4.164372E-01 5.117882E-01 -3.655882E-01

3.128358E-01 7.593271E-01 6.716492E-01 -1.220128E-01
4.027111E-01 -5.646229E-02

3.999902 1.952387 -2.373382E-01 1.558341E-01
-1.491720 -4.875921E-01 2.197183 2.230891
1.262611 7.936431E-02

9.830183E-01 9.827302E-01 9.823033E-01 9.816523E-01
9.806274E-01
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